Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Monte Carlo Markov chains for Bayesian shrinkage models with random effects (1711.06808v1)

Published 18 Nov 2017 in math.ST and stat.TH

Abstract: When performing Bayesian data analysis using a general linear mixed model, the resulting posterior density is almost always analytically intractable. However, if proper conditionally conjugate priors are used, there is a simple two-block Gibbs sampler that is geometrically ergodic in nearly all practical settings, including situations where $p > n$ (Abrahamsen and Hobert, 2017). Unfortunately, the (conditionally conjugate) multivariate normal prior on $\beta$ does not perform well in the high-dimensional setting where $p \gg n$. In this paper, we consider an alternative model in which the multivariate normal prior is replaced by the normal-gamma shrinkage prior developed by Griffin and Brown (2010). This change leads to a much more complex posterior density, and we develop a simple MCMC algorithm for exploring it. This algorithm, which has both deterministic and random scan components, is easier to analyze than the more obvious three-step Gibbs sampler. Indeed, we prove that the new algorithm is geometrically ergodic in most practical settings.

Summary

We haven't generated a summary for this paper yet.