Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on commutator in the multilinear setting (1711.06408v1)

Published 17 Nov 2017 in math.CA and math.AP

Abstract: Let $m\in \mathbb{N}$ and $\vec{b}=(b_{1},\cdots,b_{m})$ be a collection of locally integrable functions. It is proved that $b_{1},b_{2},\cdots, b_{m}\in BMO$ if and only if $$\sup_{Q}\frac{1}{|Q|{m}}\int_{Q{m}}\Big|\sum_{i=1}{m}\big(b_{i}(x_{i})-(b_{i})_{Q}\big)\Big|d\vec{x}<\infty,$$ where $(b_{i}){Q}=\frac{1}{|Q|}\int{Q}b_{i}(x)dx$. As an application, we show that if the linear commutator of certain multilinear Calder\'{o}n-Zygmund operator $[\Sigma \vec{b},T]$ is bounded from $L{p_{1}}\times\cdots\times L{p_{m}}$ to $L{p}$ with $\sum_{i=1}{m}1/p_{i}=1/p$ and $1<p,p_{1},\cdots,p_{m}<\infty$, then $b_{1},\cdots,b_{m}\in BMO$. Therefore, the result of Chaffee \cite{C} (or Li and Wick \cite{LW}) is extended to the general case.

Summary

We haven't generated a summary for this paper yet.