Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Attention: A Unified Framework for Visual Object Discovery through Dialogs and Queries (1711.06370v1)

Published 17 Nov 2017 in cs.CV

Abstract: Recognising objects according to a pre-defined fixed set of class labels has been well studied in the Computer Vision. There are a great many practical applications where the subjects that may be of interest are not known beforehand, or so easily delineated, however. In many of these cases natural language dialog is a natural way to specify the subject of interest, and the task achieving this capability (a.k.a, Referring Expression Comprehension) has recently attracted attention. To this end we propose a unified framework, the ParalleL AttentioN (PLAN) network, to discover the object in an image that is being referred to in variable length natural expression descriptions, from short phrases query to long multi-round dialogs. The PLAN network has two attention mechanisms that relate parts of the expressions to both the global visual content and also directly to object candidates. Furthermore, the attention mechanisms are recurrent, making the referring process visualizable and explainable. The attended information from these dual sources are combined to reason about the referred object. These two attention mechanisms can be trained in parallel and we find the combined system outperforms the state-of-art on several benchmarked datasets with different length language input, such as RefCOCO, RefCOCO+ and GuessWhat?!.

Citations (129)

Summary

We haven't generated a summary for this paper yet.