Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generative Approach to Question Answering (1711.06238v2)

Published 16 Nov 2017 in cs.CL

Abstract: Question Answering has come a long way from answer sentence selection, relational QA to reading and comprehension. We shift our attention to generative question answering (gQA) by which we facilitate machine to read passages and answer questions by learning to generate the answers. We frame the problem as a generative task where the encoder being a network that models the relationship between question and passage and encoding them to a vector thus facilitating the decoder to directly form an abstraction of the answer. Not being able to retain facts and making repetitions are common mistakes that affect the overall legibility of answers. To counter these issues, we employ copying mechanism and maintenance of coverage vector in our model respectively. Our results on MS-MARCO demonstrate it's superiority over baselines and we also show qualitative examples where we improved in terms of correctness and readability

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Rajarshee Mitra (2 papers)
Citations (5)