Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Approaches to Efficient Evaluation of Model Prediction Performance (1711.05663v1)

Published 15 Nov 2017 in stat.ME

Abstract: In many modern machine learning applications, the outcome is expensive or time-consuming to collect while the predictor information is easy to obtain. Semi-supervised learning (SSL) aims at utilizing large amounts of unlabeled' data along with small amounts oflabeled' data to improve the efficiency of a classical supervised approach. Though numerous SSL classification and prediction procedures have been proposed in recent years, no methods currently exist to evaluate the prediction performance of a working regression model. In the context of developing phenotyping algorithms derived from electronic medical records (EMR), we present an efficient two-step estimation procedure for evaluating a binary classifier based on various prediction performance measures in the semi-supervised (SS) setting. In step I, the labeled data is used to obtain a non-parametrically calibrated estimate of the conditional risk function. In step II, SS estimates of the prediction accuracy parameters are constructed based on the estimated conditional risk function and the unlabeled data. We demonstrate that under mild regularity conditions the proposed estimators are consistent and asymptotically normal. Importantly, the asymptotic variance of the SS estimators is always smaller than that of the supervised counterparts under correct model specification. We also correct for potential overfitting bias in the SS estimators in finite sample with cross-validation and develop a perturbation resampling procedure to approximate their distributions. Our proposals are evaluated through extensive simulation studies and illustrated with two real EMR studies aiming to develop phenotyping algorithms for rheumatoid arthritis and multiple sclerosis.

Summary

We haven't generated a summary for this paper yet.