Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting and assessing contextual change in diachronic text documents using context volatility (1711.05538v1)

Published 15 Nov 2017 in cs.CL

Abstract: Terms in diachronic text corpora may exhibit a high degree of semantic dynamics that is only partially captured by the common notion of semantic change. The new measure of context volatility that we propose models the degree by which terms change context in a text collection over time. The computation of context volatility for a word relies on the significance-values of its co-occurrent terms and the corresponding co-occurrence ranks in sequential time spans. We define a baseline and present an efficient computational approach in order to overcome problems related to computational issues in the data structure. Results are evaluated both, on synthetic documents that are used to simulate contextual changes, and a real example based on British newspaper texts.

Citations (10)

Summary

We haven't generated a summary for this paper yet.