Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rumor Source Detection under Querying with Untruthful Answers (1711.05496v5)

Published 15 Nov 2017 in cs.SI

Abstract: Social networks are the major routes for most individuals to exchange their opinions about new products, social trends and political issues via their interactions. It is often of significant importance to figure out who initially diffuses the information, ie, finding a rumor source or a trend setter. It is known that such a task is highly challenging and the source detection probability cannot be beyond 31 percent for regular trees, if we just estimate the source from a given diffusion snapshot. In practice, finding the source often entails the process of querying that asks "Are you the rumor source?" or "Who tells you the rumor?" that would increase the chance of detecting the source. In this paper, we consider two kinds of querying: (a) simple batch querying and (b) interactive querying with direction under the assumption that queries can be untruthful with some probability. We propose estimation algorithms for those queries, and quantify their detection performance and the amount of extra budget due to untruthfulness, analytically showing that querying significantly improves the detection performance. We perform extensive simulations to validate our theoretical findings over synthetic and real-world social network topologies.

Citations (26)

Summary

We haven't generated a summary for this paper yet.