Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Steganography with Kerckhoffs' Principle (1711.04916v3)

Published 14 Nov 2017 in cs.MM

Abstract: The distortion in steganography that usually comes from the modification or recoding on the cover image during the embedding process leaves the steganalyzer with possibility of discriminating. Faced with such a risk, we propose generative steganography with Kerckhoffs' principle (GSK) in this letter. In GSK, the secret messages are generated by a cover image using a generator rather than embedded into the cover, thus resulting in no modifications in the cover. To ensure the security, the generators are trained to meet Kerckhoffs' principle based on generative adversarial networks (GAN). Everything about the GSK system, except the extraction key, is public knowledge for the receivers. The secret messages can be outputted by the generator if and only if the extraction key and the cover image are both inputted. In the generator training procedures, there are two GANs, Message- GAN and Cover-GAN, designed to work jointly making the generated results under the control of the extraction key and the cover image. We provide experimental results on the training process and give an example of the working process by adopting a generator trained on MNIST, which demonstrate that GSK can use a cover image without any modification to generate messages, and without the extraction key or the cover image, only meaningless results would be obtained.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yan Ke (18 papers)
  2. Minqing Zhang (17 papers)
  3. Jia Liu (369 papers)
  4. Tingting Su (5 papers)
  5. Xiaoyuan Yang (16 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.