Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strongly graded groupoids and strongly graded Steinberg algebras (1711.04904v2)

Published 14 Nov 2017 in math.RA and math.OA

Abstract: We study strongly graded groupoids, which are topological groupoids $\mathcal G$ equipped with a continuous, surjective functor $\kappa: \mathcal G \to \Gamma$, to a discrete group $\Gamma$, such that $\kappa{-1}(\gamma)\kappa{-1}(\delta) = \kappa{-1}(\gamma \delta)$, for all $\gamma, \delta \in \Gamma$. We introduce the category of graded $\mathcal G$-sheaves, and prove an analogue of Dade's Theorem: $\mathcal G$ is strongly graded if and only if every graded $\mathcal G$-sheaf is induced by a $\mathcal G_{\epsilon}$-sheaf. The Steinberg algebra of a graded ample groupoid is graded, and we prove that the algebra is strongly graded if and only if the groupoid is. Applying this result, we obtain a complete graphical characterisation of strongly graded Leavitt path and Kumjian-Pask algebras.

Summary

We haven't generated a summary for this paper yet.