Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Person Recognition using Smartphones' Accelerometer Data (1711.04689v1)

Published 13 Nov 2017 in eess.SP, cs.CR, and cs.LG

Abstract: Smartphones have become quite pervasive in various aspects of our daily lives. They have become important links to a host of important data and applications, which if compromised, can lead to disastrous results. Due to this, today's smartphones are equipped with multiple layers of authentication modules. However, there still lies the need for a viable and unobtrusive layer of security which can perform the task of user authentication using resources which are cost-efficient and widely available on smartphones. In this work, we propose a method to recognize users using data from a phone's embedded accelerometer sensors. Features encapsulating information from both time and frequency domains are extracted from walking data samples, and are used to build a Random Forest ensemble classification model. Based on the experimental results, the resultant model delivers an accuracy of 0.9679 and Area under Curve (AUC) of 0.9822.

Citations (15)

Summary

We haven't generated a summary for this paper yet.