Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word, Subword or Character? An Empirical Study of Granularity in Chinese-English NMT (1711.04457v1)

Published 13 Nov 2017 in cs.CL

Abstract: Neural machine translation (NMT), a new approach to machine translation, has been proved to outperform conventional statistical machine translation (SMT) across a variety of language pairs. Translation is an open-vocabulary problem, but most existing NMT systems operate with a fixed vocabulary, which causes the incapability of translating rare words. This problem can be alleviated by using different translation granularities, such as character, subword and hybrid word-character. Translation involving Chinese is one of the most difficult tasks in machine translation, however, to the best of our knowledge, there has not been any other work exploring which translation granularity is most suitable for Chinese in NMT. In this paper, we conduct an extensive comparison using Chinese-English NMT as a case study. Furthermore, we discuss the advantages and disadvantages of various translation granularities in detail. Our experiments show that subword model performs best for Chinese-to-English translation with the vocabulary which is not so big while hybrid word-character model is most suitable for English-to-Chinese translation. Moreover, experiments of different granularities show that Hybrid_BPE method can achieve best result on Chinese-to-English translation task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yining Wang (91 papers)
  2. Long Zhou (57 papers)
  3. Jiajun Zhang (176 papers)
  4. Chengqing Zong (65 papers)
Citations (16)