Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The rational SPDE approach for Gaussian random fields with general smoothness (1711.04333v4)

Published 12 Nov 2017 in stat.ME, cs.NA, and math.NA

Abstract: A popular approach for modeling and inference in spatial statistics is to represent Gaussian random fields as solutions to stochastic partial differential equations (SPDEs) of the form $L{\beta}u = \mathcal{W}$, where $\mathcal{W}$ is Gaussian white noise, $L$ is a second-order differential operator, and $\beta>0$ is a parameter that determines the smoothness of $u$. However, this approach has been limited to the case $2\beta\in\mathbb{N}$, which excludes several important models and makes it necessary to keep $\beta$ fixed during inference. We propose a new method, the rational SPDE approach, which in spatial dimension $d\in\mathbb{N}$ is applicable for any $\beta>d/4$, and thus remedies the mentioned limitation. The presented scheme combines a finite element discretization with a rational approximation of the function $x{-\beta}$ to approximate $u$. For the resulting approximation, an explicit rate of convergence to $u$ in mean-square sense is derived. Furthermore, we show that our method has the same computational benefits as in the restricted case $2\beta\in\mathbb{N}$. Several numerical experiments and a statistical application are used to illustrate the accuracy of the method, and to show that it facilitates likelihood-based inference for all model parameters including $\beta$.

Citations (79)

Summary

We haven't generated a summary for this paper yet.