Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cohen-Macaulay invariant subalgebras of Hopf dense Galois extensions (1711.04197v1)

Published 11 Nov 2017 in math.RA

Abstract: Let $H$ be a semisimple Hopf algebra, and let $R$ be a noetherian left $H$-module algebra. If $R/RH$ is a right $H*$-dense Galois extension, then the invariant subalgebra $RH$ will inherit the AS-Cohen-Macaulay property from $R$ under some mild conditions, and $R$, when viewed as a right $RH$-module, is a Cohen-Macaulay module. In particular, we show that if $R$ is a noetherian complete semilocal algebra which is AS-regular of global dimension 2 and $H=\operatorname{\bf k} G$ for some finite subgroup $G\subseteq Aut(R)$, then all the indecomposable Cohen-Macaulay module of $RH$ is a direct summand of $R_{RH}$, and hence $RH$ is Cohen-Macaulay-finite, which generalizes a classical result for commutative rings. The main tool used in the paper is the extension groups of objects in the corresponding quotient categories.

Summary

We haven't generated a summary for this paper yet.