Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Material Classification in the Wild: Do Synthesized Training Data Generalise Better than Real-World Training Data? (1711.03874v1)

Published 9 Nov 2017 in cs.CV

Abstract: We question the dominant role of real-world training images in the field of material classification by investigating whether synthesized data can generalise more effectively than real-world data. Experimental results on three challenging real-world material databases show that the best performing pre-trained convolutional neural network (CNN) architectures can achieve up to 91.03% mean average precision when classifying materials in cross-dataset scenarios. We demonstrate that synthesized data achieve an improvement on mean average precision when used as training data and in conjunction with pre-trained CNN architectures, which spans from ~ 5% to ~ 19% across three widely used material databases of real-world images.

Citations (4)

Summary

We haven't generated a summary for this paper yet.