Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Complete Semidefinite Algorithm for Detecting Copositive Matrices and Tensors (1711.03704v1)

Published 10 Nov 2017 in math.OC

Abstract: A real symmetric matrix (resp., tensor) is said to be copositive if the associated quadratic (resp., homogeneous) form is greater than or equal to zero over the nonnegative orthant. The problem of detecting their copositivity is NP-hard. This paper proposes a complete semidefinite relaxation algorithm for detecting the copositivity of a matrix or tensor. If it is copositive, the algorithm can get a certificate for the copositivity. If it is not, the algorithm can get a point that refutes the copositivity. We show that the detection can be done by solving a finite number of semidefinite relaxations, for all matrices and tensors.

Summary

We haven't generated a summary for this paper yet.