Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant states of linear quantum stochastic systems under Weyl perturbations of the Hamiltonian and coupling operators (1711.03503v1)

Published 9 Nov 2017 in math-ph, cs.SY, math.MP, math.NA, math.PR, and quant-ph

Abstract: This paper is concerned with the sensitivity of invariant states in linear quantum stochastic systems with respect to nonlinear perturbations. The system variables are governed by a Markovian Hudson-Parthasarathy quantum stochastic differential equation (QSDE) driven by quantum Wiener processes of external bosonic fields in the vacuum state. The quadratic system Hamiltonian and the linear system-field coupling operators, corresponding to a nominal open quantum harmonic oscillator, are subject to perturbations represented in a Weyl quantization form. Assuming that the nominal linear QSDE has a Hurwitz dynamics matrix and using the Wigner-Moyal phase-space framework, we carry out an infinitesimal perturbation analysis of the quasi-characteristic function for the invariant quantum state of the nonlinear perturbed system. The resulting correction of the invariant states in the spatial frequency domain may find applications to their approximate computation, analysis of relaxation dynamics and non-Gaussian state generation in nonlinear quantum stochastic systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.