Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigid continuation paths I. Quasilinear average complexity for solving polynomial systems (1711.03420v2)

Published 9 Nov 2017 in math.NA, cs.CC, and cs.NA

Abstract: How many operations do we need on the average to compute an approximate root of a random Gaussian polynomial system? Beyond Smale's 17th problem that asked whether a polynomial bound is possible, we prove a quasi-optimal bound $\text{(input size)}{1+o(1)}$. This improves upon the previously known $\text{(input size)}{\frac32 +o(1)}$ bound. The new algorithm relies on numerical continuation along \emph{rigid continuation paths}. The central idea is to consider rigid motions of the equations rather than line segments in the linear space of all polynomial systems. This leads to a better average condition number and allows for bigger steps. We show that on the average, we can compute one approximate root of a random Gaussian polynomial system of~$n$ equations of degree at most $D$ in $n+1$ homogeneous variables with $O(n5 D2)$ continuation steps. This is a decisive improvement over previous bounds that prove no better than $\sqrt{2}{\min(n, D)}$ continuation steps on the average.

Citations (14)

Summary

We haven't generated a summary for this paper yet.