Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric Learning-based Generative Adversarial Network (1711.02792v1)

Published 8 Nov 2017 in cs.LG

Abstract: Generative Adversarial Networks (GANs), as a framework for estimating generative models via an adversarial process, have attracted huge attention and have proven to be powerful in a variety of tasks. However, training GANs is well known for being delicate and unstable, partially caused by its sig- moid cross entropy loss function for the discriminator. To overcome such a problem, many researchers directed their attention on various ways to measure how close the model distribution and real distribution are and have applied dif- ferent metrics as their objective functions. In this paper, we propose a novel framework to train GANs based on distance metric learning and we call it Metric Learning-based Gener- ative Adversarial Network (MLGAN). The discriminator of MLGANs can dynamically learn an appropriate metric, rather than a static one, to measure the distance between generated samples and real samples. Afterwards, MLGANs update the generator under the newly learned metric. We evaluate our ap- proach on several representative datasets and the experimen- tal results demonstrate that MLGANs can achieve superior performance compared with several existing state-of-the-art approaches. We also empirically show that MLGANs could increase the stability of training GANs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.