Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Road Segmentation Using LiDAR Data Processing on an FPGA (1711.02757v1)

Published 7 Nov 2017 in cs.RO

Abstract: This paper presents the FPGA design of a convolutional neural network (CNN) based road segmentation algorithm for real-time processing of LiDAR data. For autonomous vehicles, it is important to perform road segmentation and obstacle detection such that the drivable region can be identified for path planning. Traditional road segmentation algorithms are mainly based on image data from cameras, which is subjected to the light condition as well as the quality of road markings. LiDAR sensor can obtain the 3D geometry information of the vehicle surroundings with very high accuracy. However, it is a computational challenge to process a large amount of LiDAR data at real-time. In this work, a convolutional neural network model is proposed and trained to perform semantic segmentation using the LiDAR sensor data. Furthermore, an efficient hardware design is implemented on the FPGA that can process each LiDAR scan in 16.9ms, which is much faster than the previous works. Evaluated using KITTI road benchmarks, the proposed solution achieves high accuracy of road segmentation.

Citations (46)

Summary

We haven't generated a summary for this paper yet.