Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contaminant Removal for Android Malware Detection Systems (1711.02715v2)

Published 7 Nov 2017 in cs.CR

Abstract: A recent report indicates that there is a new malicious app introduced every 4 seconds. This rapid malware distribution rate causes existing malware detection systems to fall far behind, allowing malicious apps to escape vetting efforts and be distributed by even legitimate app stores. When trusted downloading sites distribute malware, several negative consequences ensue. First, the popularity of these sites would allow such malicious apps to quickly and widely infect devices. Second, analysts and researchers who rely on machine learning based detection techniques may also download these apps and mistakenly label them as benign since they have not been disclosed as malware. These apps are then used as part of their benign dataset during model training and testing. The presence of contaminants in benign dataset can compromise the effectiveness and accuracy of their detection and classification techniques. To address this issue, we introduce PUDROID (Positive and Unlabeled learning-based malware detection for Android) to automatically and effectively remove contaminants from training datasets, allowing machine learning based malware classifiers and detectors to be more effective and accurate. To further improve the performance of such detectors, we apply a feature selection strategy to select pertinent features from a variety of features. We then compare the detection rates and accuracy of detection systems using two datasets; one using PUDROID to remove contaminants and the other without removing contaminants. The results indicate that once we remove contaminants from the datasets, we can significantly improve both malware detection rate and detection accuracy

Citations (12)

Summary

We haven't generated a summary for this paper yet.