2000 character limit reached
On majorization and range inclusion of operators on Hilbert $C^*$-modules (1711.02280v1)
Published 7 Nov 2017 in math.OA and math.FA
Abstract: It is proved that for adjointable operators $A$ and $B$ between Hilbert $C*$-modules, certain majorization conditions are always equivalent without any assumptions on $\overline{\mathcal{R}(A*)}$, where $A*$ denotes the adjoint operator of $A$ and $\overline{\mathcal{R}(A*)}$ is the norm closure of the range of $A*$. In the case that $\overline{{\mathcal R}(A*)}$ is not orthogonally complemented, it is proved that there always exists an adjointable operator $B$ whose range is contained in that of $A$, whereas the associated equation $AX=B$ for adjointable operators is unsolvable.