Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Speed Reading via Skim-RNN (1711.02085v3)

Published 6 Nov 2017 in cs.CL

Abstract: Inspired by the principles of speed reading, we introduce Skim-RNN, a recurrent neural network (RNN) that dynamically decides to update only a small fraction of the hidden state for relatively unimportant input tokens. Skim-RNN gives computational advantage over an RNN that always updates the entire hidden state. Skim-RNN uses the same input and output interfaces as a standard RNN and can be easily used instead of RNNs in existing models. In our experiments, we show that Skim-RNN can achieve significantly reduced computational cost without losing accuracy compared to standard RNNs across five different natural language tasks. In addition, we demonstrate that the trade-off between accuracy and speed of Skim-RNN can be dynamically controlled during inference time in a stable manner. Our analysis also shows that Skim-RNN running on a single CPU offers lower latency compared to standard RNNs on GPUs.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com