Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Practical Data-Dependent Metric Compression with Provable Guarantees (1711.01520v1)

Published 5 Nov 2017 in cs.DS

Abstract: We introduce a new distance-preserving compact representation of multi-dimensional point-sets. Given $n$ points in a $d$-dimensional space where each coordinate is represented using $B$ bits (i.e., $dB$ bits per point), it produces a representation of size $O( d \log(d B/\epsilon) + \log n)$ bits per point from which one can approximate the distances up to a factor of $1 \pm \epsilon$. Our algorithm almost matches the recent bound of~\cite{indyk2017near} while being much simpler. We compare our algorithm to Product Quantization (PQ)~\cite{jegou2011product}, a state of the art heuristic metric compression method. We evaluate both algorithms on several data sets: SIFT (used in \cite{jegou2011product}), MNIST~\cite{lecun1998mnist}, New York City taxi time series~\cite{guha2016robust} and a synthetic one-dimensional data set embedded in a high-dimensional space. With appropriately tuned parameters, our algorithm produces representations that are comparable to or better than those produced by PQ, while having provable guarantees on its performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.