Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on the starlike log--harmonic mappings of order alpha (1711.00896v4)

Published 2 Nov 2017 in math.CV

Abstract: Let $h$ and $g$ be two analytic functions in the unit disc $\Delta$ that $g(0)=1$. Also let $\beta$ be a complex number with ${\rm Re}{\beta}>-1/2$. A function $f$ is said to be log--harmonic mapping if it has the following representation \begin{equation*} f(z)=z |z|{2\beta} h(z)\overline{g(z)}\quad (z\in \Delta). \end{equation*} A log--harmonic mapping $f$ is said to be starlike log--harmonic mapping of order $\alpha$, where $0\leq \alpha<1$, if \begin{equation*} {\rm Re}\left{\frac{zf_z -\overline{z}f_{\overline{z}}}{f}\right}>\alpha\quad(z\in \Delta). \end{equation*} In this paper, by use of the subordination principle, we study some geometric properties of the starlike log--harmonic mappings of order $\alpha$. Also, we estimate the Jacobian of log--harmonic mappings.

Summary

We haven't generated a summary for this paper yet.