Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant ergodic measures and the classification of crossed product $C^\ast$-algebras (1711.00886v3)

Published 2 Nov 2017 in math.DS and math.OA

Abstract: Let $\alpha: G\curvearrowright X$ be a minimal free continuous action of an infinite countable amenable group on an infinite compact metrizable space. In this paper, under the hypothesis that the invariant ergodic probability Borel measure space $E_G(X)$ is compact and zero-dimensional, we show that the action $\alpha$ has the small boundary property. This partially answers an open problem in dynamical systems that asks whether a minimal free action of an amenable group has the small boundary property if its space $M_G(X)$ of invariant Borel probability measures forms a Bauer simplex. In addition, under the same hypothesis, we show that dynamical comparison implies almost finiteness, which was shown by Kerr to imply that the crossed product is $\mathcal{Z}$-stable. Finally, we discuss some rank properties and provide two classifiability results for crossed products, one of which is based on the work of Elliott and Niu.

Summary

We haven't generated a summary for this paper yet.