Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A continuous selection for optimal portfolios under convex risk measures does not always exist (1711.00370v1)

Published 31 Oct 2017 in q-fin.MF

Abstract: One of the crucial problems in mathematical finance is to mitigate the risk of a financial position by setting up hedging positions of eligible financial securities. This leads to focusing on set-valued maps associating to any financial position the set of those eligible payoffs that reduce the risk of the position to a target acceptable level at the lowest possible cost. Among other properties of such maps, the ability to ensure lower semicontinuity and continuous selections is key from an operational perspective. It is known that lower semicontinuity generally fails in an infinite-dimensional setting. In this note we show that neither lower semicontinuity nor, more surprisingly, the existence of continuous selections can be a priori guaranteed even in a finite-dimensional setting. In particular, this failure is possible under arbitrage-free markets and convex risk measures.

Summary

We haven't generated a summary for this paper yet.