Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Life-Span of Semilinear Wave Equations with Scale-invariant Damping: Critical Strauss Exponent Case (1711.00223v1)

Published 1 Nov 2017 in math.AP

Abstract: The blow up problem of the semilinear scale-invariant damping wave equation with critical Strauss type exponent is investigated. The life span is shown to be: $T(\varepsilon)\leq C\exp(\varepsilon{-2p(p-1)})$ when $p=p_S(n+\mu)$ for $0<\mu<\frac{n2+n+2}{n+2}$. This result completes our previous study \cite{Tu-Lin} on the sub-Strauss type exponent $p<p_S(n+\mu)$. Our novelty is to construct the suitable test function from the modified Bessel function. This approach might be also applied to the other type damping wave equations.

Summary

We haven't generated a summary for this paper yet.