Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Social Media Text Summarization by Learning Sentence Weight Distribution (1710.11332v1)

Published 31 Oct 2017 in cs.CL

Abstract: Recently, encoder-decoder models are widely used in social media text summarization. However, these models sometimes select noise words in irrelevant sentences as part of a summary by error, thus declining the performance. In order to inhibit irrelevant sentences and focus on key information, we propose an effective approach by learning sentence weight distribution. In our model, we build a multi-layer perceptron to predict sentence weights. During training, we use the ROUGE score as an alternative to the estimated sentence weight, and try to minimize the gap between estimated weights and predicted weights. In this way, we encourage our model to focus on the key sentences, which have high relevance with the summary. Experimental results show that our approach outperforms baselines on a large-scale social media corpus.

Citations (3)

Summary

We haven't generated a summary for this paper yet.