Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nebula: F0 Estimation and Voicing Detection by Modeling the Statistical Properties of Feature Extractors (1710.11317v2)

Published 31 Oct 2017 in eess.AS and cs.SD

Abstract: A F0 and voicing status estimation algorithm for high quality speech analysis/synthesis is proposed. This problem is approached from a different perspective that models the behavior of feature extractors under noise, instead of directly modeling speech signals. Under time-frequency locality assumptions, the joint distribution of extracted features and target F0 can be characterized by training a bank of Gaussian mixture models (GMM) on artificial data generated from Monte-Carlo simulations. The trained GMMs can then be used to generate a set of conditional distributions on the predicted F0, which are then combined and post-processed by Viterbi algorithm to give a final F0 trajectory. Evaluation on CSTR and CMU Arctic speech databases shows that the proposed method, trained on fully synthetic data, achieves lower gross error rates than state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Kanru Hua (3 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.