Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aleman-Richter-Sundberg's Theorem On $P^t(μ)$-Spaces (1710.11293v2)

Published 31 Oct 2017 in math.FA

Abstract: Let $\nu$ be a finite complex measure with support in $\bar {\mathbb D}$ and let $\mathcal C\nu$ denote the Cauchy transform of $\nu .$ Suppose that $\nu$ annihilates polynomials in complex variable $z$ and $\nu |_{\partial \mathbb D} = hm,$ where $m$ is the normalized Lebesgue measure on $\partial {\mathbb D}$. We show that, for $\epsilon_0 > 0,$ $m$-almost all $e{i\theta}\in \partial {\mathbb D},$ and $a > 0,$ when $r$ tends to 1, there exists $E_r \subset B(re{i\theta}, \frac{1-r}{4})$ with analytic capacity $\gamma (E_r) < \epsilon_0 \frac{1-r}{4}$ such that $|\mathcal C\nu (\lambda) - e{-i\theta}h(e{i\theta}) | \le a$ area-almost all $\lambda \in B (re{i\theta}, \frac{1-r}{4} ) \setminus E_r .$ Using this result, we provide an alternative proof of Aleman-Richter-Sundberg's Theorem on nontangential limits in $Pt(\mu )$-Spaces and the index of invariant subspaces.

Summary

We haven't generated a summary for this paper yet.