Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Prediction of Satisfied User Ratio for Compressed Video (1710.11090v1)

Published 30 Oct 2017 in cs.MM

Abstract: A large-scale video quality dataset called the VideoSet has been constructed recently to measure human subjective experience of H.264 coded video in terms of the just-noticeable-difference (JND). It measures the first three JND points of 5-second video of resolution 1080p, 720p, 540p and 360p. Based on the VideoSet, we propose a method to predict the satisfied-user-ratio (SUR) curves using a machine learning framework. First, we partition a video clip into local spatial-temporal segments and evaluate the quality of each segment using the VMAF quality index. Then, we aggregate these local VMAF measures to derive a global one. Finally, the masking effect is incorporated and the support vector regression (SVR) is used to predict the SUR curves, from which the JND points can be derived. Experimental results are given to demonstrate the performance of the proposed SUR prediction method.

Citations (30)

Summary

We haven't generated a summary for this paper yet.