Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations (1710.10888v2)

Published 30 Oct 2017 in cs.CG and math.CO

Abstract: Let $P$ be a set of $n$ points in the plane. We compute the value of $\theta\in [0,2\pi)$ for which the rectilinear convex hull of $P$, denoted by $\mathcal{RH}{\theta}(P)$, has minimum (or maximum) area in optimal $O(n\log n)$ time and $O(n)$ space, improving the previous $O(n2)$ bound. Let $\mathcal{O}$ be a set of $k$ lines through the origin sorted by slope and let $\alpha_i$ be the aperture angles of the $2k$ sectors defined by every pair of two consecutive lines. Let $\Theta{i}=\pi-\alpha_i$ and $\Theta=\min{\Theta_i:i=1,\ldots,2k}$. We further obtain: (1) Given a set $\mathcal{O}$ such that $\Theta\ge\frac{\pi}{2}$, we provide an algorithm to compute the $\mathcal{O}$-convex hull of $P$ in optimal $O(n\log n)$ time and $O(n)$ space, while if $\Theta<\frac{\pi}{2}$ the complexities are $O(\frac{n}{\Theta}\log n)$ time and $O(\frac{n}{\Theta})$ space. (2) Given a set $\mathcal{O}$ such that $\Theta\ge\frac{\pi}{2}$, we compute and maintain the boundary of the ${\mathcal{O}}{\theta}$-convex hull of $P$ for $\theta\in [0,2\pi)$ in $O(kn\log n)$ time and $O(kn)$ space, or in $O(k\frac{n}{\Theta}\log n)$ time and $O(k\frac{n}{\Theta})$ space if $\Theta<\frac{\pi}{2}$. (3) Finally, given a set $\mathcal{O}$ such that $\Theta\ge\frac{\pi}{2}$, we compute the ${\mathcal{O}}{\theta}$-convex hull of $P$ of minimum (or maximum) area over all $\theta\in [0,2\pi)$ in $O(kn\log n)$ time and $O(kn)$ space.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Carlos Alegría-Galicia (4 papers)
  2. David Orden (29 papers)
  3. Carlos Seara (21 papers)
  4. Jorge Urrutia (26 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com