Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jointly Tracking and Separating Speech Sources Using Multiple Features and the generalized labeled multi-Bernoulli Framework (1710.10432v2)

Published 28 Oct 2017 in eess.AS and cs.SD

Abstract: This paper proposes a novel joint multi-speaker tracking-and-separation method based on the generalized labeled multi-Bernoulli (GLMB) multi-target tracking filter, using sound mixtures recorded by microphones. Standard multi-speaker tracking algorithms usually only track speaker locations, and ambiguity occurs when speakers are spatially close. The proposed multi-feature GLMB tracking filter treats the set of vectors of associated speaker features (location, pitch and sound) as the multi-target multi-feature observation, characterizes transitioning features with corresponding transition models and overall likelihood function, thus jointly tracks and separates each multi-feature speaker, and addresses the spatial ambiguity problem. Numerical evaluation verifies that the proposed method can correctly track locations of multiple speakers and meanwhile separate speech signals.

Citations (10)

Summary

We haven't generated a summary for this paper yet.