Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Detection of Flash Malware: Limitations and Open Issues (1710.10225v2)

Published 27 Oct 2017 in cs.CR

Abstract: During the past four years, Flash malware has become one of the most insidious threats to detect, with almost 600 critical vulnerabilities targeting Adobe Flash disclosed in the wild. Research has shown that machine learning can be successfully used to detect Flash malware by leveraging static analysis to extract information from the structure of the file or its bytecode. However, the robustness of Flash malware detectors against well-crafted evasion attempts - also known as adversarial examples - has never been investigated. In this paper, we propose a security evaluation of a novel, representative Flash detector that embeds a combination of the prominent, static features employed by state-of-the-art tools. In particular, we discuss how to craft adversarial Flash malware examples, showing that it suffices to manipulate the corresponding source malware samples slightly to evade detection. We then empirically demonstrate that popular defense techniques proposed to mitigate evasion attempts, including re-training on adversarial examples, may not always be sufficient to ensure robustness. We argue that this occurs when the feature vectors extracted from adversarial examples become indistinguishable from those of benign data, meaning that the given feature representation is intrinsically vulnerable. In this respect, we are the first to formally define and quantitatively characterize this vulnerability, highlighting when an attack can be countered by solely improving the security of the learning algorithm, or when it requires also considering additional features. We conclude the paper by suggesting alternative research directions to improve the security of learning-based Flash malware detectors.

Citations (23)

Summary

We haven't generated a summary for this paper yet.