Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advanced LSTM: A Study about Better Time Dependency Modeling in Emotion Recognition (1710.10197v1)

Published 27 Oct 2017 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: Long short-term memory (LSTM) is normally used in recurrent neural network (RNN) as basic recurrent unit. However,conventional LSTM assumes that the state at current time step depends on previous time step. This assumption constraints the time dependency modeling capability. In this study, we propose a new variation of LSTM, advanced LSTM (A-LSTM), for better temporal context modeling. We employ A-LSTM in weighted pooling RNN for emotion recognition. The A-LSTM outperforms the conventional LSTM by 5.5% relatively. The A-LSTM based weighted pooling RNN can also complement the state-of-the-art emotion classification framework. This shows the advantage of A-LSTM.

Citations (75)

Summary

We haven't generated a summary for this paper yet.