Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density of Analytic Polynomials in Abstract Hardy Spaces (1710.10078v1)

Published 27 Oct 2017 in math.CA

Abstract: Let $X$ be a separable Banach function space on the unit circle $\mathbb{T}$ and $H[X]$ be the abstract Hardy space built upon $X$. We show that the set of analytic polynomials is dense in $H[X]$ if the Hardy-Littlewood maximal operator is bounded on the associate space $X'$. This result is specified to the case of variable Lebesgue spaces.

Summary

We haven't generated a summary for this paper yet.