Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Distance Correlation to Multiscale Graph Correlation (1710.09768v3)

Published 26 Oct 2017 in stat.ML

Abstract: Understanding and developing a correlation measure that can detect general dependencies is not only imperative to statistics and machine learning, but also crucial to general scientific discovery in the big data age. In this paper, we establish a new framework that generalizes distance correlation --- a correlation measure that was recently proposed and shown to be universally consistent for dependence testing against all joint distributions of finite moments --- to the Multiscale Graph Correlation (MGC). By utilizing the characteristic functions and incorporating the nearest neighbor machinery, we formalize the population version of local distance correlations, define the optimal scale in a given dependency, and name the optimal local correlation as MGC. The new theoretical framework motivates a theoretically sound Sample MGC and allows a number of desirable properties to be proved, including the universal consistency, convergence and almost unbiasedness of the sample version. The advantages of MGC are illustrated via a comprehensive set of simulations with linear, nonlinear, univariate, multivariate, and noisy dependencies, where it loses almost no power in monotone dependencies while achieving better performance in general dependencies, compared to distance correlation and other popular methods.

Citations (59)

Summary

We haven't generated a summary for this paper yet.