Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear endpoint estimates for Calderón commutator with rough kernel (1710.09664v1)

Published 26 Oct 2017 in math.CA

Abstract: In this paper, we establish some bilinear endpoint estimates of Calder\'on commutator $\mathcal{C}\nabla A,f$ with a homogeneous kernel when $\Omega\in L\log+L(\mathbf{S}{d-1})$. More precisely, we prove that $\mathcal{C}[\nabla A,f]$ maps $Lq(\mathbb{R}d)\times L1(\mathbb{R}d)$ to $L{r,\infty}(\mathbb{R}d)$ if $q>d$ which improves previous result essentially. If $q=d$, we show that Calder\'on commutator maps $L{d,1}(\mathbb{R}d)\times L1(\mathbb{R}d)$ to $L{r,\infty}(\mathbb{R}d)$ which is new even if the kernel is smooth. The novelty in the paper is that we prove a new endpoint estimate of the Mary Weiss maximal function which may have its own interest in the theory of singular integral.

Summary

We haven't generated a summary for this paper yet.