Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bézier curves that are close to elastica (1710.09192v2)

Published 25 Oct 2017 in math.NA and cs.GR

Abstract: We study the problem of identifying those cubic B\'ezier curves that are close in the L2 norm to planar elastic curves. The problem arises in design situations where the manufacturing process produces elastic curves; these are difficult to work with in a digital environment. We seek a sub-class of special B\'ezier curves as a proxy. We identify an easily computable quantity, which we call the lambda-residual, that accurately predicts a small L2 distance. We then identify geometric criteria on the control polygon that guarantee that a B\'ezier curve has lambda-residual below 0.4, which effectively implies that the curve is within 1 percent of its arc-length to an elastic curve in the L2 norm. Finally we give two projection algorithms that take an input B\'ezier curve and adjust its length and shape, whilst keeping the end-points and end-tangent angles fixed, until it is close to an elastic curve.

Citations (7)

Summary

We haven't generated a summary for this paper yet.