Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Corrector homogenization estimates for a non-stationary Stokes-Nernst-Planck-Poisson system in perforated domains (1710.09166v1)

Published 25 Oct 2017 in math.AP and math.NA

Abstract: We consider a non-stationary Stokes-Nernst-Planck-Poisson system posed in perforated domains. Our aim is to justify rigorously the homogenization limit for the upscaled system derived by means of two-scale convergence in \cite{RMK12}. In other words, we wish to obtain the so-called corrector homogenization estimates that specify the error obtained when upscaling the microscopic equations. Essentially, we control in terms of suitable norms differences between the micro- and macro-concentrations and between the corresponding micro- and macro-concentration gradients. The major challenges that we face are the coupled flux structure of the system, the nonlinear drift terms and the presence of the microstructures. Employing various energy-like estimates, we discuss several scalings choices and boundary conditions.

Summary

We haven't generated a summary for this paper yet.