Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature-aided Incremental Aggregated Gradient Method (1710.08936v1)

Published 24 Oct 2017 in stat.ML, cs.LG, and math.OC

Abstract: We propose a new algorithm for finite sum optimization which we call the curvature-aided incremental aggregated gradient (CIAG) method. Motivated by the problem of training a classifier for a d-dimensional problem, where the number of training data is $m$ and $m \gg d \gg 1$, the CIAG method seeks to accelerate incremental aggregated gradient (IAG) methods using aids from the curvature (or Hessian) information, while avoiding the evaluation of matrix inverses required by the incremental Newton (IN) method. Specifically, our idea is to exploit the incrementally aggregated Hessian matrix to trace the full gradient vector at every incremental step, therefore achieving an improved linear convergence rate over the state-of-the-art IAG methods. For strongly convex problems, the fast linear convergence rate requires the objective function to be close to quadratic, or the initial point to be close to optimal solution. Importantly, we show that running one iteration of the CIAG method yields the same improvement to the optimality gap as running one iteration of the full gradient method, while the complexity is $O(d2)$ for CIAG and $O(md)$ for the full gradient. Overall, the CIAG method strikes a balance between the high computation complexity incremental Newton-type methods and the slow IAG method. Our numerical results support the theoretical findings and show that the CIAG method often converges with much fewer iterations than IAG, and requires much shorter running time than IN when the problem dimension is high.

Citations (11)

Summary

We haven't generated a summary for this paper yet.