Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of locally-injective homomorphisms to tournaments (1710.08825v3)

Published 24 Oct 2017 in cs.DM and math.CO

Abstract: For oriented graphs $G$ and $H$, a homomorphism $f: G \rightarrow H$ is locally-injective if, for every $v \in V(G)$, it is injective when restricted to some combination of the in-neighbourhood and out-neighbourhood of $v$. Two of the possible definitions of local-injectivity are examined. In each case it is shown that the associated homomorphism problem is NP-complete when $H$ is a reflexive tournament on three or more vertices with a loop at every vertex, and solvable in polynomial time when $H$ is a reflexive tournament on two or fewer vertices.

Citations (5)

Summary

We haven't generated a summary for this paper yet.