Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Noisy Group Testing via Separate Decoding of Items (1710.08704v2)

Published 24 Oct 2017 in cs.IT, math.IT, and math.PR

Abstract: The group testing problem consists of determining a small set of defective items from a larger set of items based on a number of tests, and is relevant in applications such as medical testing, communication protocols, pattern matching, and more. In this paper, we revisit an efficient algorithm for noisy group testing in which each item is decoded separately (Malyutov and Mateev, 1980), and develop novel performance guarantees via an information-theoretic framework for general noise models. For the special cases of no noise and symmetric noise, we find that the asymptotic number of tests required for vanishing error probability is within a factor $\log 2 \approx 0.7$ of the information-theoretic optimum at low sparsity levels, and that with a small fraction of allowed incorrectly decoded items, this guarantee extends to all sublinear sparsity levels. In addition, we provide a converse bound showing that if one tries to move slightly beyond our low-sparsity achievability threshold using separate decoding of items and i.i.d. randomized testing, the average number of items decoded incorrectly approaches that of a trivial decoder.

Citations (25)

Summary

We haven't generated a summary for this paper yet.