Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Cropping via Attention Box Prediction and Aesthetics Assessment (1710.08014v1)

Published 22 Oct 2017 in cs.CV

Abstract: We model the photo cropping problem as a cascade of attention box regression and aesthetic quality classification, based on deep learning. A neural network is designed that has two branches for predicting attention bounding box and analyzing aesthetics, respectively. The predicted attention box is treated as an initial crop window where a set of cropping candidates are generated around it, without missing important information. Then, aesthetics assessment is employed to select the final crop as the one with the best aesthetic quality. With our network, cropping candidates share features within full-image convolutional feature maps, thus avoiding repeated feature computation and leading to higher computation efficiency. Via leveraging rich data for attention prediction and aesthetics assessment, the proposed method produces high-quality cropping results, even with the limited availability of training data for photo cropping. The experimental results demonstrate the competitive results and fast processing speed (5 fps with all steps).

Citations (90)

Summary

We haven't generated a summary for this paper yet.