Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Network Approximation using Tensor Sketching (1710.07850v1)

Published 21 Oct 2017 in stat.ML, cs.AI, and cs.LG

Abstract: Deep neural networks are powerful learning models that achieve state-of-the-art performance on many computer vision, speech, and language processing tasks. In this paper, we study a fundamental question that arises when designing deep network architectures: Given a target network architecture can we design a smaller network architecture that approximates the operation of the target network? The question is, in part, motivated by the challenge of parameter reduction (compression) in modern deep neural networks, as the ever increasing storage and memory requirements of these networks pose a problem in resource constrained environments. In this work, we focus on deep convolutional neural network architectures, and propose a novel randomized tensor sketching technique that we utilize to develop a unified framework for approximating the operation of both the convolutional and fully connected layers. By applying the sketching technique along different tensor dimensions, we design changes to the convolutional and fully connected layers that substantially reduce the number of effective parameters in a network. We show that the resulting smaller network can be trained directly, and has a classification accuracy that is comparable to the original network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shiva Prasad Kasiviswanathan (28 papers)
  2. Nina Narodytska (57 papers)
  3. Hongxia Jin (64 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.