Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Learning-to-Infer Method for Real-Time Power Grid Multi-Line Outage Identification (1710.07818v2)

Published 21 Oct 2017 in cs.LG, cs.AI, and stat.ML

Abstract: Identifying a potentially large number of simultaneous line outages in power transmission networks in real time is a computationally hard problem. This is because the number of hypotheses grows exponentially with the network size. A new "Learning-to-Infer" method is developed for efficient inference of every line status in the network. Optimizing the line outage detector is transformed to and solved as a discriminative learning problem based on Monte Carlo samples generated with power flow simulations. A major advantage of the developed Learning-to-Infer method is that the labeled data used for training can be generated in an arbitrarily large amount rapidly and at very little cost. As a result, the power of offline training is fully exploited to learn very complex classifiers for effective real-time multi-line outage identification. The proposed methods are evaluated in the IEEE 30, 118 and 300 bus systems. Excellent performance in identifying multi-line outages in real time is achieved with a reasonably small amount of data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.