Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Point Neurons with Conductance-Based Synapses in the Neural Engineering Framework (1710.07659v1)

Published 20 Oct 2017 in q-bio.NC, cs.AI, and cs.NE

Abstract: The mathematical model underlying the Neural Engineering Framework (NEF) expresses neuronal input as a linear combination of synaptic currents. However, in biology, synapses are not perfect current sources and are thus nonlinear. Detailed synapse models are based on channel conductances instead of currents, which require independent handling of excitatory and inhibitory synapses. This, in particular, significantly affects the influence of inhibitory signals on the neuronal dynamics. In this technical report we first summarize the relevant portions of the NEF and conductance-based synapse models. We then discuss a na\"ive translation between populations of LIF neurons with current- and conductance-based synapses based on an estimation of an average membrane potential. Experiments show that this simple approach works relatively well for feed-forward communication channels, yet performance degrades for NEF networks describing more complex dynamics, such as integration.

Citations (9)

Summary

We haven't generated a summary for this paper yet.