Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Space-Efficient Method for Navigable Ensemble Analysis and Visualization (1710.07631v1)

Published 19 Oct 2017 in cs.HC

Abstract: Scientists increasingly rely on simulation runs of complex models in lieu of cost-prohibitive or infeasible experimentation. The data output of many controlled simulation runs, the ensemble, is used to verify correctness and quantify uncertainty. However, due to their size and complexity, ensembles are difficult to visually analyze because the working set often exceeds strict memory limitations. We present a navigable ensemble analysis tool, NEA, for interactive exploration of ensembles. NEA's pre-processing component takes advantage of the data similarity characteristics of ensembles to represent the data in a new, spatially-efficient data structure which does not require fully reconstructing the original data at visualization time. This data structure allows a fine degree of control in working set management, which enables interactive ensemble exploration while fitting within memory limitations. Scientists can also gain new insights from the data-similarity analysis in the pre-processing component.

Summary

We haven't generated a summary for this paper yet.