Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Empirical Risk Minimization with Input Perturbation (1710.07425v1)

Published 20 Oct 2017 in stat.ML and cs.LG

Abstract: We propose a novel framework for the differentially private ERM, input perturbation. Existing differentially private ERM implicitly assumed that the data contributors submit their private data to a database expecting that the database invokes a differentially private mechanism for publication of the learned model. In input perturbation, each data contributor independently randomizes her/his data by itself and submits the perturbed data to the database. We show that the input perturbation framework theoretically guarantees that the model learned with the randomized data eventually satisfies differential privacy with the prescribed privacy parameters. At the same time, input perturbation guarantees that local differential privacy is guaranteed to the server. We also show that the excess risk bound of the model learned with input perturbation is $O(1/n)$ under a certain condition, where $n$ is the sample size. This is the same as the excess risk bound of the state-of-the-art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kazuto Fukuchi (27 papers)
  2. Quang Khai Tran (1 paper)
  3. Jun Sakuma (46 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.