Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications (1710.06679v3)
Abstract: Motivated mainly by the localization over an open bounded set $\Omega$ of $\mathbb Rn$ of solutions of the Schr\"odinger equations, we consider the Schr\"odinger equation over $\Omega$ with a very singular potential $V(x) \ge C d (x, \partial \Omega){-r}$ with $r\ge 2$ and a convective flow $\vec U$. We prove the existence and uniqueness of a very weak solution of the equation, when the right hand side datum $f(x)$ is in $L1 (\Omega, d(\cdot, \partial \Omega))$, even if no boundary condition is a priori prescribed. We prove that, in fact, the solution necessarily satisfies (in a suitable way) the Dirichlet condition $u = 0$ on $\partial \Omega$. These results improve some of the results of the previous paper by the authors in collaboration with Roger Temam. In addition, we prove some new results dealing with the $m$-accretivity in $L1 (\Omega, d(\cdot, \partial \Omega)^ \alpha)$, where $\alpha \in [0,1]$, of the associated operator, the corresponding parabolic problem and the study of the complex evolution Schr\"odinger equation in $\mathbb Rn$.